Feb 27, 17 / Ari 02, 01 22:45 UTC

Metalurgy in space?  

Hello all,

I do not know how many of you have seen the second predator movie starring Mr. Glover but there was a subject mentioned I would like to talk about. In one scene after the predator had slain a mafia boss and his lackies in the guy's condo. The police found a weapon that I guess you could call a throwing knife or something similar to one and remarked how light it was yet how strong it was. Which brings me to why I started this topic. The environment of space will lead to the elimination of some elements that limited the things we could do with metal. Namely gravity and I am wondering just what kind of break throughs in metalurgy that could lead to?

I mean the absence of gravity would leave the molecules of a metal to link together differently or so I would assume. Which could lead to metals becoming even stronger and lighter. Considering that they no longer have any weight that the material's structure would have to support. Anyone care to start the ball rolling? I do not quite know enough about metalurgy to speculate too much

Feb 28, 17 / Ari 03, 01 15:11 UTC

Space, specifically microgravity, does have potential to impact crystaline formation in materials such as metals, with microgravity leading to "better" formation of the crystals themselves.

This won't, IMHO, lead to any breakthroughs in metalurgy itself. Just make it easier to make certain things - we can already make them. IIRC what made that object in the film special is it's alloy involved elements we previously had no knowlege of(clearly scripted by someone with understanding of the periodic table).

Aluminium isn't an overly good matierial to be considering for a hull(I assume that's what you'd mean by "space-cabine"), at least on the outside, as the excitation of the aluminium atoms by "cosmic rays" tends to result in X-rays. For "minimal secondary neutron production" you'd possibly want a material like Iron.

  Updated  on Feb 28, 17 / Ari 03, 01 15:29 UTC, Total number of edits: 1 time
Reason: Additional data

Apr 7, 17 / Tau 13, 01 18:58 UTC

I don't know much about this technology, but I think it would be easier to 3D print metal in space because of reasons: you don't have to create vacuum for electron emission gun and for vacuum atomization. Also there is no gravity, it means you can print enormous constructions. And it's possible to use metal powder made out of metals collected from asteroids. 

Metals won't oxidate in space. So wielding will never be so simple.

And temperature - it's cold there so it's easy to harden those metals.

Jun 27, 17 / Leo 10, 01 08:08 UTC

Not specifically Metal but...

As I understand it, Carbon nanotubes tend to break because of gravity during their formation.

Just a thought.

Aug 3, 17 / Vir 19, 01 16:07 UTC

As a result of experiments it was established that alloys obtained under microgravity conditions in some cases exceed alloys obtained on the surface of the Earth. In addition, it is possible to obtain alloys that can not be obtained on Earth at all.

It is interesting to use space debris, metoids and asteroids as raw materials.

Which methods of metal smelting can be used in space (induction furnace for example).

As in the conditions of space from a melt to make products (rolling, profile and so on). Will it be possible to use a magnetic field for this?

What difficulties can we face in this? What are the opportunities today to overcome these difficulties?

Can it make sense to create automatic devices on the remote control? What devices should be equipped with such devices?


For the melting of metals I propose to use a non-contact induction furnace. Such furnaces are used now on the Earth. For example, you can lead a levitation melting

Https://www.youtube.com/watch?v=DkpEz7sync

I  suppose that it is possible using a high-frequency electromagnetic  field not only to keep the melt in the furnace but also to "pull" the  ingots out of the melt. I could be wrong. Correct me if so.

In  order to investigate the possibility of obtaining metals from cosmic  bodies, in any case it is worthwhile to use automatic devices with  remote control because this is very dangerous. I  can not imagine how you can capture a "rock" flying at a huge speed in  open space ... But scientists almost planted a satellite on the surface  of a comet. So we can catch an asteroid too. There are areas where cosmic dust, small meteoroids accumulate (due to  the influence of the gravity of the Earth and the Moon.To work out the  possibility of using the resources of space, the apparatus should be  sent there.

Https://map.gsfc.nasa.gov/mission/observatory_l2.html

It may also make sense to send not one but several vehicles with  different specializations (studying the structure and composition of  cosmic bodies, melting, processing ingots in rolling, testing, transport  ...) And they act as one system, exchanging data with each other.

Which devices are useful for such devices? For starters, these are manipulators. The manipulator's working tool must be replaceable. On one machine 2-3 manipulators.

For induction, you can use inductors (different sizes and shapes). Also, electromagnets with magnetic cores of various shapes.

I propose to receive energy from solar cells and / or a small nuclear reactor (used for satellites in the USA and the USSR)

And what would you suggest?

Yes, more questions than answers. Let's think about this together. Can someone have interesting information or ideas?


Rus


В результате экспериментов установлено что сплавы полученные в условиях микрогравитации в ряде случаев превосходят сплавы полученные на поверхности Земли. Кроме этого можно получить сплавы которые на Земле вообще невозможно получить.

Интересна возможность использования в качестве сырья космический мусор, метороиды и астероиды.

Какие способы выплавки металла можно использовать в космосе (индукционная печь например).

Как в условиях космоса из расплава изготавливать изделия (прокат,  профиль и так далее). Получится ли использовать для этого магнитное поле?

С какими трудностями мы можем столкнуться при этом? Какие есть сегодня возможности для преодоления этих трудностей?

Может имеет смысл создать автоматические аппараты на дистанционном управлении? Какими устройствами должны быть оборудованы такие аппараты?

Да, больше вопросов чем ответов. Давайте вместе поразмышляем на эту тему. Может у кого-то есть интересная информация или идеи?


Для плавки металлов предлагаю использовать бесконтактную индукционную печь. Подобные печи используются сейчас и на Земле. Для примера моожно привести левитационная плавка

https://www.youtube.com/watch?v=DkpEz7sync

Предполагаю что возможно используя высокочастотное электромагнитное поле не только удерживать расплав в печи но и "вытягивать" из расплава слитки. Я могу ошибаться. Поправьте меня если так.

Для исследования возможности получения металлов из космических тел в любом случае стоит использовать автоматические аппараты с удаленным управлением потому что это очень опасно. Не представляю как можно произвести захват "скалы" летящей на огромноой скорости в открытом космосе... Но ведь ученые почти посадили спутник на поверхность кометы. Значит и поймать астероид тоже сможем. Есть области где скапливается космическая пыль, мелкие метероиды (из за влияния гравитации Земли и Луны. Для отработки возможности использования ресурсов космоса аппараты стоит отправлять именно туда.

https://map.gsfc.nasa.gov/mission/observatory_l2.html

Также может имеет смысл отправлять не один а несколько аппаратов с разной специализацией (исследование структуры и состава космических тел, плавка, переработка слитков в прокат, испытания, транспорт ...) Причем чтобы действовали они как одна система, обмениваясь друг с другом данными.

Какие устройства пригодятся на таких аппаратах? Для начала это манипуляторы. Рабочий инструмент манипулятора должен быть сменным. На один аппарат 2-3 манипулятора.

Для выплавки можно применить индукторы (разного размера и формы). Также электромагниты с магнитопроводами различной формы.

Энергию предлагаю получать от солнечных батарей и/или небольшого ядерного реактора (использовался для спутников в США и СССР)

А что бы Вы предложили?

Candidate Strategist

  Updated  on Aug 6, 17 / Vir 22, 01 08:40 UTC, Total number of edits: 1 time

Jul 18, 18 / Vir 03, 02 17:58 UTC

прочность почти любого металла определяется прочностью меж кристаллического вещества-и на порядок хуже прочности монокристалла.

Нужно переходить к напечатанным структурам типа вспененного металла-при регулярной структуре они будут прочнее и эластичнее отливок

И легче!!!Многие детали которые легко напечатать в невесомости на земле изготовить сложно

the strength of almost any metal is determined by the strength of the intercrystalline substance-and an order of magnitude worse than the strength of the single crystal.

It is necessary to move to printed structures such as foam metal-with a regular structure, they will be stronger and more elastic castings

And lighter!!!Many items that are easy to print in weightlessness on the ground is difficult to manufacture